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Lecture 2.   Dynamic equations. Mathematical description of systems  

in the state space. Linearization  

 

2.1. The linear systems of differential equations 

A general control object is a dynamic system the properties of which can be 

described by ordinary differential equations. In this connection control theory faces 

the identification problem: how to obtain a mathematical description of a dynamic 

system? Nowadays we can find sufficiently accurate solutions of a parametric 

identification problem having defined a mathematical description structure, i.e. a 

mathematical model. 
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    Fig. 2.0. Control Object with undefined point of application of external disturbance 

 

Let a system behavior be completely described by an ordinary differential 

equation of an order “n” with constant coefficients: 
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 Here ),0(),,0( mjbnia ji  are constants; m ≤ n defines physical realizability 

condition. 

To obtain a solution of an ordinary differential equation of order “n” we need 

exactly “n” initial conditions predefined: 
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A complete solution of an ordinary differential equation is composed as a sum 

of general and particular solutions: 
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A general solution of an ordinary differential equation is a sum of exponents: 
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Here (in 2.2) ci (i = 1,…, n) are the constants defined by the initial conditions. 

Here ),1( ni
i

  are proper numbers calculated as a solution of characteristic 

polynomial of the following form: 
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A general solution (2.2) characterizes proper movement (free movement) of a 

dynamic system. 

A Particular solution has the form 
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where function K(t - τ) is a weight function. The particular solution characterizes 

forced movement of a system. 

Let us compare mathematical and control theory points of view on solution of 

an ordinary differential equation (fig. 2.1). 

Mathematic                      general             +         particular 

                                                                                                                 

Control                   proper movement             +            forced movement 

          System                     (transient process)                          (steady-state) 

 

Fig. 2.1. Two different points of view on one solution of an ordinary differential 

equation 

 

As you can see in control theory free movement is called transient process, and 

forced movement is called steady-state. The later formally is a solution of a 

differential equation after initial conditions took place. 

If the right-hand side of education (2.1) changes badly (i.e. it involves 

derivatives of low order) the left-hand side changes badly too. It is not the best way 

one would try to obtain really good mathematical description since the input is 

reflected almost unchanged into the output. To provide rapidly varying signal the 

input should be a subject to significant changes, step function is a good example in 

this case. Yet as a consequence the derivative has point of discontinuity so 

mathematical description is taken under consideration only in narrow range of values, 

providing only partial solutions.  This fact makes us always specify the range of 

values in which mathematical description is applicable. 

Next, having the description (2.1) we also need to obtain solution that will 

show us a trajectory of system movement. For this purpose we need to integrate (2.1) 

“n” times, or move from differential equation of an order “n” to “n” first order 
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differential equations (Cauchy form is the right choice) and solve the resulting 

system. 

Consider homogeneous system of the first order differential equations in the 

following form: 
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The system (2.4) can be rewritten in matrix form as: 

                                             AXX  .                                                                  (2.4a)  
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Now we will write solution of the system (2.4). It can be written as (2.2), since 

it is the direct representation of (2.1), or in matrix form: 
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)( XetX At      ,                                             (2.5)  

where vector X0 is the value of vector  X  at initial moment of time  t=t0=0,  X(0)≠0. 

In (2.5) exponential matrix  e
At

  is expanded into an infinite consistent as the 

following: 
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and is called a transfer matrix of the system (2.4) or (2.4a) in the matrix form. 

Consider nonhomogeneous system of the first order differential equations, i.e. 

the case when nonzero input signal U(t) is applied to (2.4): 
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Introduce a new vector ),...,,(
21 n

T bbbb    and rewrite (2.7) in the matrix form 

as 

                                                       UbAXX T  .                                         (2.7a)  

Let at initial moment of time t=t0=0 the value vector X(t) be equal to X0≠0, 

then the solution of the system (2.7) in the matrix form will be written as 
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2.2     Mathematical description of ACS in state space 

A state space mathematical description (or a mathematical model) is presented 

in general as the following: 
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where Xi are state variables (i = 1,…, n) and Uj are control variables (j = 1,…, m). The 

equations in system (2.8) are called state equations or constitutive equations. 

Denote all system output variables as yk (k = 1, … , r), then: 
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Now a control object in state space is depicted as in fig. 2.2. 
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                                                           Xi (t) 

          Uj(t)      yk(t) 

 

Fig. 2.2. Control object in state space 

The functions  fi (i = 1,…, n)  and  φk (k = 1,…, r) reflect mathematical 

presentation of physical laws obeyed by a particular control object. 

If the control Uj  impacts directly on outputs yk then output variables equations 

have the following form: 
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The equations in systems (2.9) and (2.9a) are often called observer able equations. 

Let us introduce new vector entities, i.e. state a variable vector, a control variable 

vector and an output variable vector: 
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Having done all this we at last can rewrite our system equations in the purely 

vector form: 
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Here functions f(∙) and φ(∙) are nonlinear vector functions of vector arguments 

X and U:     
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This completes state space description of ACS. But there is one disturbing fact: 

it is not uncommon to have differential equations mentioned so far in nonlinear form. 

 They are hard to analyze and even harder to solve synthesis.  Therefore in such 

       OC 
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cases we first of all have to linearize the given differential equations to obtain the first 

approximation equations that are much simpler to analyze and solve synthesis. 

2.3   Linearization 

Let a dynamic system be described by equations ),( UXfX   and 

),( UXY  . Consider equations in the form (2.8) and (2.9a) and expand nonlinear 

functions ),1,,1(, rkniyx
ki

  into Taylor series in the vicinity of operation 

condition:                                                                         (*) 

We will place all terms of the order second and higher group into Ri, Fk 
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         Then the state equations system will take the following form: 
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Accordingly, the observer able equations system will be presented as: 
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The equations in systems (2.13) and (2.14) are linearized-state and observer 

able equations correspondingly; they are called linear approximation equations. 

Introduce several new matrixes: 
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Then (2.13) and (2.14) can be rewritten in a matrix form as: 
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If a particular ACS does not have direct impact of control signal upon output, 

the system (2.15) becomes slightly simpler: 
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In the nearest future we will use this particular dynamic system description 

 


